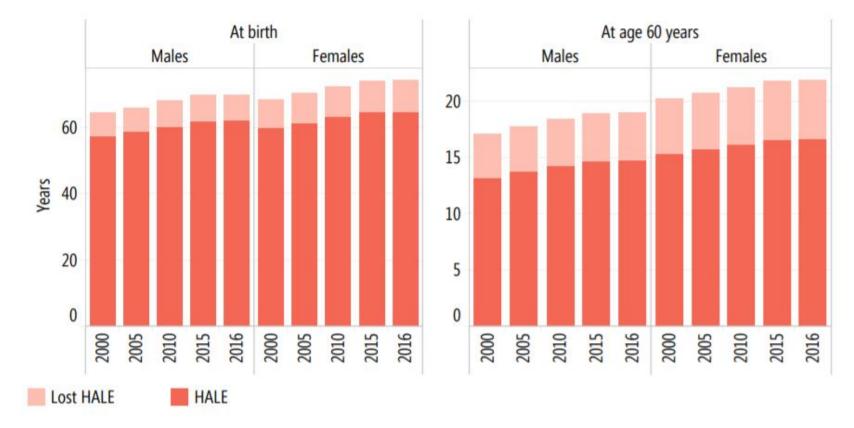


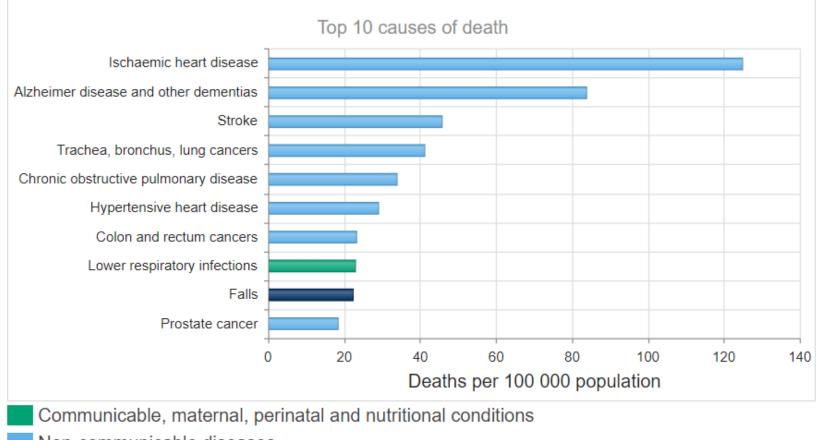
The sex gap in cardiometabolic diseases: What we (don't) know and why it matters?

Assoc. Prof Taulant Muka, PD, MD, PhD


Institute of Social and Preventive Medicine (ISPM), University of Bern

taulant.muka@ispm.unibe.ch

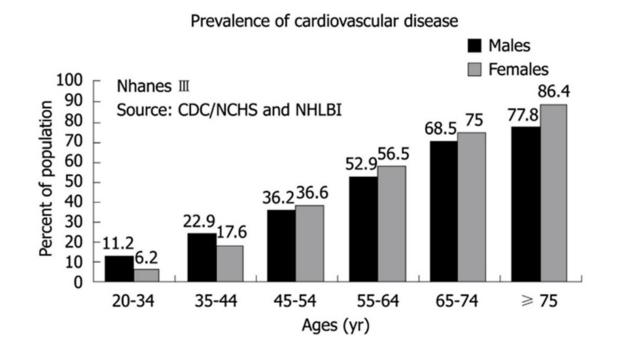
Life expectancy


Fig. 1.3 Global life expectancy and HALE, 2000–2016

Source: WHO (2018) (2).

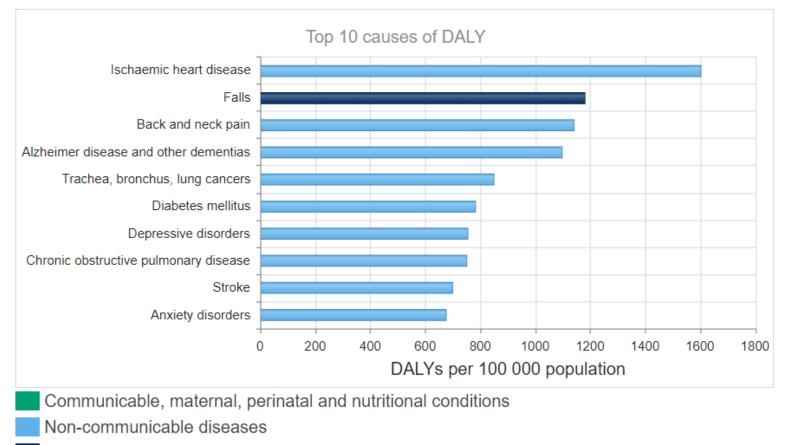
 $u^{\scriptscriptstyle \flat}$

Top 10 causes of death, Switzerland



Non-communicable diseases

Injuries

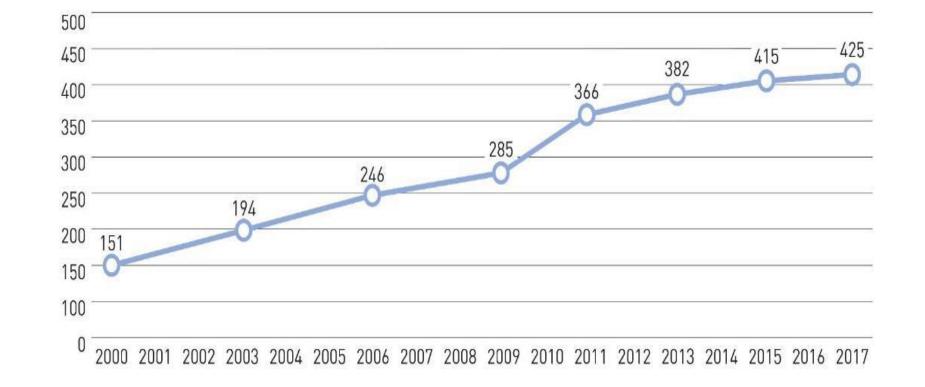

11

Sex differences in risk of cardiovascular disease

In Switzerland, CVD is responsible for 37 % of deaths among men and 41% among women

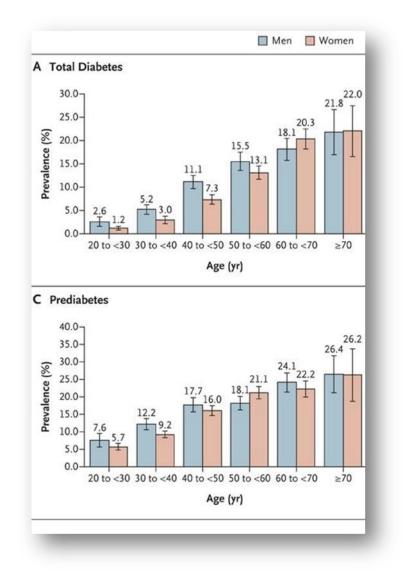
Top 10 causes of DALY, Switzerland

Injuries

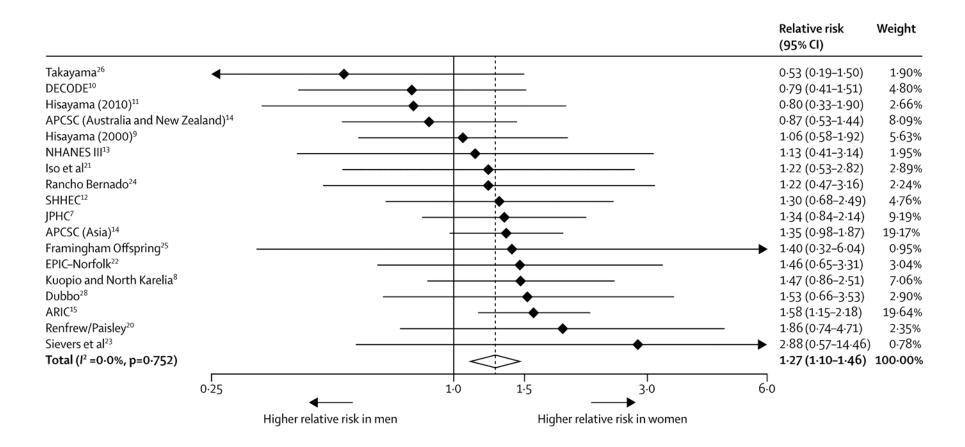

https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death

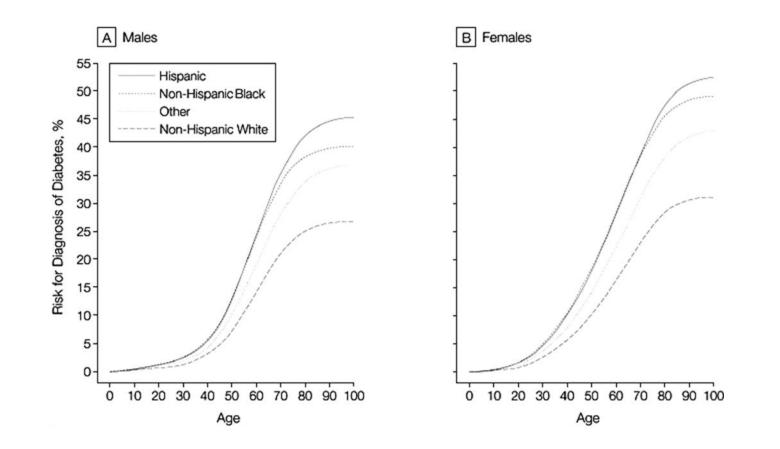
UNIVERSITÄT BERN

 $\boldsymbol{u}^{\scriptscriptstyle b}$


Total number of adults with diabetes (20-79 years), Globally

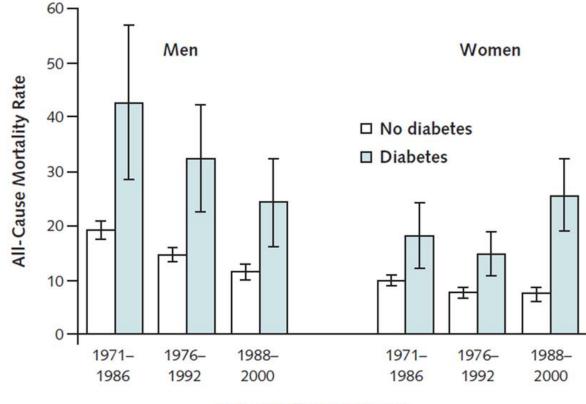
In 2017 425 million adults had diabetes


Sex differences in diabetes risk


- The prevalence of prediabetes and diabetes is lower in women than in men aged ≤60 years
- Women in their 60s and 70s have similar prevalence of diabetes or higher than men of the same age

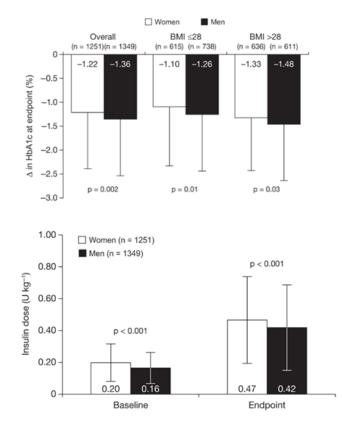
Diabetic women to men relative risk for CHD and Stroke

Lifetime risk for diagnosis of diabetes



Narayan et al. 2003

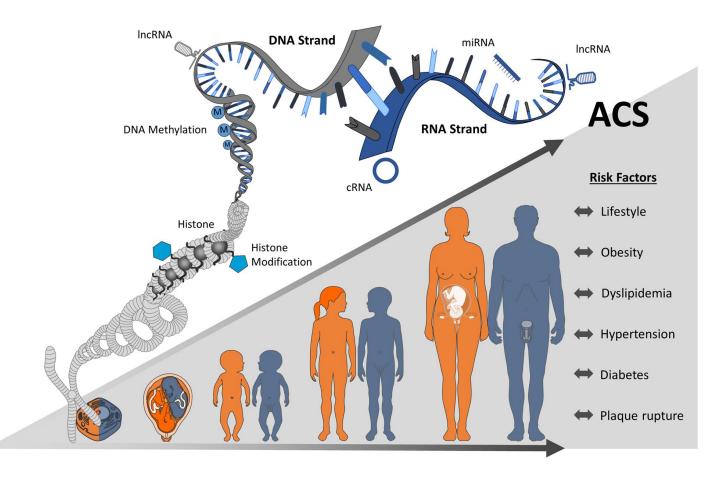
UNIVERSITÄT BERN

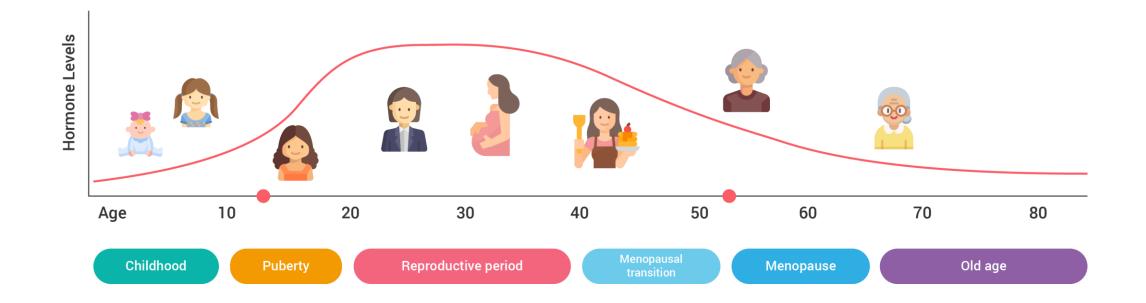

Age-adjusted all-cause mortality


U.S. population age 35 to 74 years with and without diabetes, by cohort and sex

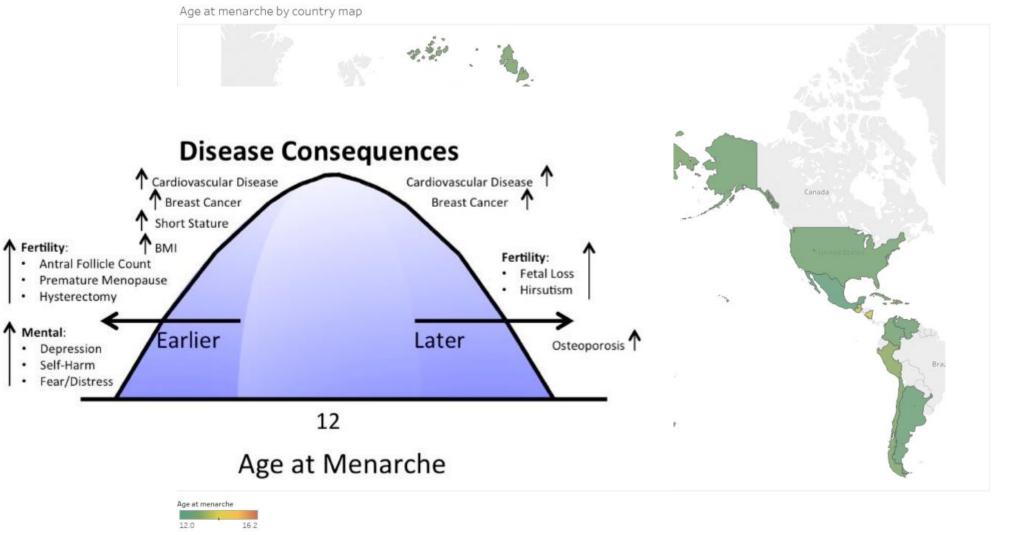
Cohort Follow-up Period

Effect of sex on treatment outcomes in T2D



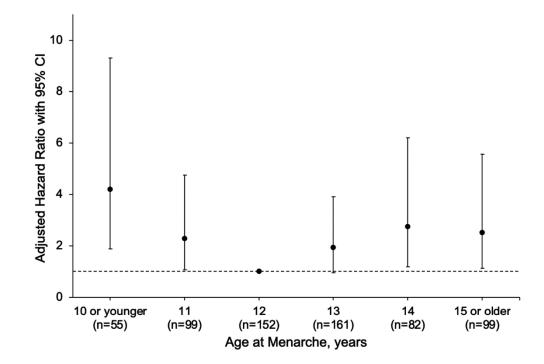

6 RCTs of insulin glargine or NPH insulin

Sex differences in cardiometabolic diseases


Women's life cycle

b UNIVERSITÄT BERN

 $u^{\scriptscriptstyle \flat}$


Age at menarche

UNIVERSITÄT BERN

Age at menarche and CVD risk

- The association between the age at menarche and CVD is U-shaped
- Age at menarche could be a potential screening tool for women at risk of adverse CVD events.
- Strong inter-relationship between age at menarche and BMI limits the ability to consider their distinct influences on disease risks in traditional observational studies.

Women's Ischemia Syndrome Evaluation to assess major adverse CVD outcomes (the first occurrence of all-cause death, nonfatal myocardial infarction, nonfatal stroke, or heart failure hospitalization)

Author, year of publication	Location	Study design	No. of cases in POC users	POC type		ES (95% CI)
Oral						
Lidegaard, 1993	Europe	Case-control	7	Progestogen	•	0.90 (0.40, 2.40)
Tzourio, 1995	Europe	Case-control	1	Progestogen	•	1.10 (0.10, 10.30)
WHO, 1998	Worldwide	e Case-control	54	d-Norgestrel, Anorethidrate diproproinate, DI-Norgestrel, Norethisetrone		1.07 (0.62, 1.86)
Heinemann, 1999	Europe	Case-control	3	NA		1.60 (0.20, 10.70)
Lidegaard, 2012	Europe	Cohort	134	Pooled		0.97 (0.56, 1.68)
Fixed-effects model	(I-squared	= 0.0%, <i>p</i> = 0.	987)		\triangleleft	1.02 (0.72, 1.44)
Random-effects mo	del					1.02 (0.72, 1.44)
					T	
Other						
Lidegaard, 2012	Europe	Cohort	48	Levonogestrel		0.74 (0.55, 0.99)
Petitti, 1998	USA	Case-control	1	Progestogen	•	1.10 (0.10, 9.20)
WHO, 1998	Worldwide	e Case-control	1	DMPA, Norethisterone oenanthate		0.89 (0.53, 1.49)
Fixed-effects model	(I-squared	= 0.0%, <i>p</i> = 0.	794)		\diamond	0.78 (0.60, 1.00)
Random-effects mod	del				\bigcirc	0.78 (0.60, 1.00)
St	roke				i	

Gestational diabetes (GDM)

- Hyperglycaemia tha pregnancy (late sec weeks of gestation) trimester (27–40 we delivery
- The most common | pregnancy (1% to >
- Prevalence of undia and even overt diab increasing.
- Maternal overweigh childbearing, previo history of type 2 dia are major GDM risk

	Country	T2DM/GDM	T2DM/no GDM		Relative risk (95% CI)	_
eig et al,18 1995-2002	Canada	2874/21823	6628/637341		12.66 (12.15-13.19)	
ee H et al, 15 1995-97	Korea	71/620	22/868		4.52 (2.83-7.21)	
Aadarasz et al, 21 1995	Hungary	21/68	0/39		24.93 (1.55-400.64)	D)
underson et al, 22 1985-206	USA	43/166	150/2242	-	3.87 (2.87-5.22)	
ambergue et al, 23 1992	France	53/295	1/111	_ >	19.94 (2.79-142.47)	
ee A et al,24 1971-2003	Australia	405/5470	16/783		3.62 (2.21-5.93)	
erraz et al ^{17*}	Brazil	6/70	7/108	e	1.32 (0.46-3.78)	
rishnaveni et al, ²⁵ 1997-98	India	13/35	8/489		22.70 (10.09-51.08)	
lorimitsu et al,26 1999-2001	Brazil	7/23	0/11	_	7.50 (0.47-120.11)	Western
irvelä et al, ⁵ 1984-94	Finland	23/435	0/435		47.00 (2.86-771.65)	Pacific
lbareda et al, 27 1966-93	Spain	44/696	0/70		9.07 (0.56-146.25)	10.3 (4.5-2
berg et al,28 1991-99	Sweden	21/229	1/61		5.59 (0.77-40.66)	10.5 (1.5 2
nné et al,16 1964-65	Sweden	10/28	0/52		38-38 (2-33-631-74)	
ian et al, ²⁹ 1964-65	China	15/45	1/39		13.00 (1.80-93.93)	
o et al, ³⁰ 1988-95	China	105/801	7/431		8.07 (3.79-17.19)	
sei et al, 31 1990-91	USA	10/15	0/35		47.25 (2.95-757.28)	South-Eas
amm et al,32 1978-85	Denmark	33/241	0/57		16-06 (1-00-258-06)	Asia
enjamin et al,33 1961-88	New Mexico	14/47	3/47		4-67 (1-43-15-21)	15.0 (9.6–1
'Sullivan,34 1954-60 and 1962-70	USA	224/615	18/328		6-64 (4-19-10-52)	
ersson et al, ³⁵ 1961-84	Sweden	5/145	0/41		3.16 (0.18-55.76)	ib-Saharan
otal		3997/31867	6862/643588	•	7.43 (4.79-11.51)	rica
test for heterogeneity: $\tau^2 = 0.50$, $\chi^2 = 1$	26.67 df-10 (p	0.0001) F-85.0% (05%(178.00)			1.8 (8.5–13.1)
est for overall effect: Z=9-39 (p<0-00		.0.0001), 1 =05.0% (J 3 10 1 0 - 30 1			
						le range) prevalence (%) of gestational diabet
			0-01 0-1	1 10 100 Increased risk		website).

are major GDM risk Figure 2: Risk of type 2 diabetes mellitus (T2DM) after gestational diabetes mellitus (GDM)

x-axis is log scale. Each solid square represents a relative risk. Horizontal lines indicate 95% CIs. df=degrees of freedom. *Dates not available.

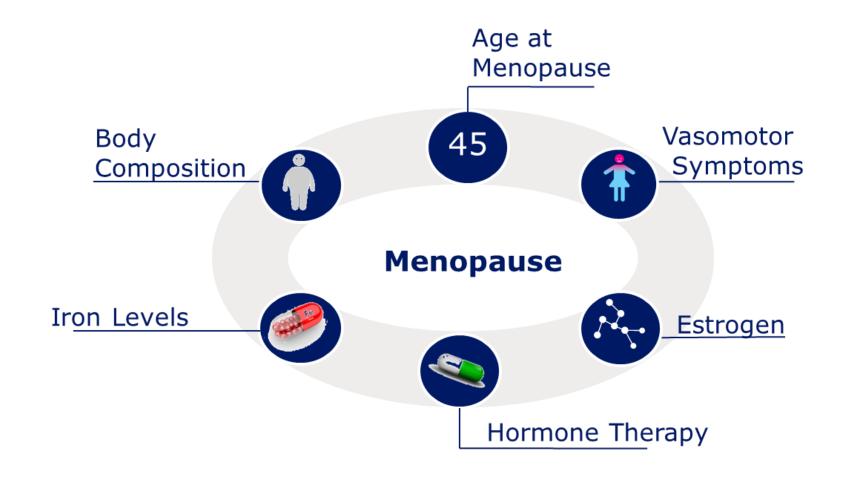
Gestational diabetes (GDM)

REVIEW

Open Access

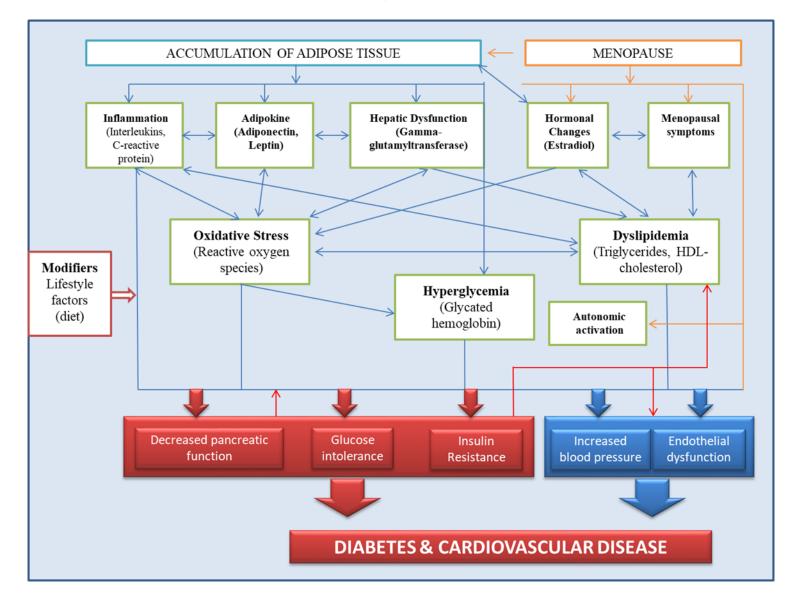
Fetal sex and maternal pregnancy

outcomes: a systematic review and meta-

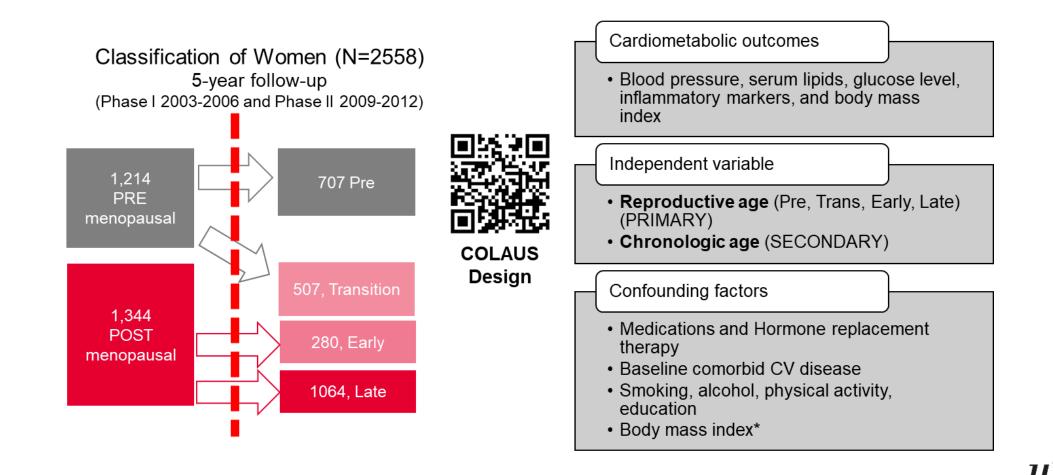


Male fetal sex was associated with term pre-eclampsia (pooled OR 1.07 [95%CI 1.06 to 1.09]) and gestational diabetes (pooled OR 1.04 [1.02 to 1.07]). All other pregnancy complications (i.e., gestational hypertension, total pre-eclampsia, eclampsia, placental abruption, and post-partum hemorrhage) tended to be associated with male fetal sex, except for preterm pre-eclampsia, which was more associated with female fetal sex.

Search strategy: Six electronic databases Ovid MEDLINE, EMBASE, Cochrane Central, Web-of-Science, PubMed, and Google Scholar were systematically searched to identify eligible studies. Reference lists of the included studies and contact with experts were also used for identification of studies.


Selection criteria: Observational studies that assessed fetal sex and the presence of maternal pregnancy

Menopause



 $u^{\scriptscriptstyle \flat}$

Adverse metabolic changes related to menopause

 $u^{\scriptscriptstyle \flat}$

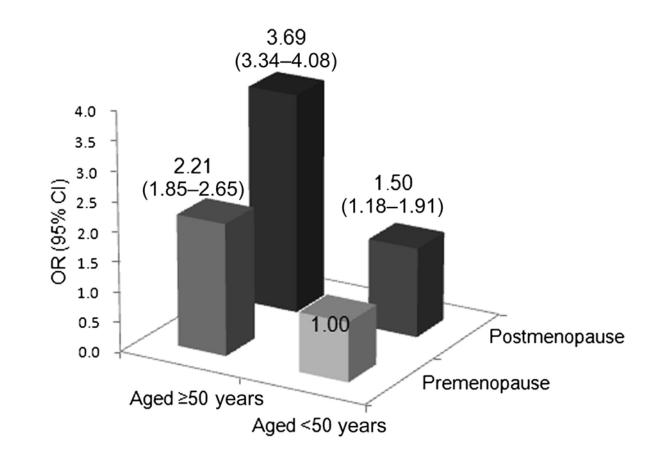
UNIVERSITÄT BERN

Cross-sectional analysis of risk factors

	PRE	TRANS	Early POST	Late LPOST	p-value
Body mass index (kg/m2)	Ref	0.513 [-0.0814, 0.997]	1.500 [0.722, 2.213]*	2.049 [1.142, 2.845]*	0.000
Systolic blood pressure (mmHg)	Ref	-0.616 [-2.489, 1.257]	-1.663 [-4.259, 0.933]	-0.417 [-3.387,2.554]	0.691
Diastolic blood pressure (mmHg)	Ref	1.950 [0.701, 3.200]*	3.367 [1.635, 5.099]*	3.196 [1.214, 5.178]*	0.001
Total cholesterol (mmol/L)	Ref	0.087 [-0.0275, 0.203]	0.440 [0.280, 0.600]*	0.380 [0.198, 0.563]*	0.000
High-density lipoprotein (mmol/L)	Ref	0.050 [0.0012,0.099]*	0.072 [0.0043, 0.139]*	0.066 [-0.0109, 0.144]	0.104
Triglycerides (mmol/L)	Ref	0.015 [-0.037 ,0.066]*	0.008 [-0.063, 0.0796]	0.057 [-0.0244, 0.139]	0.206
Fasting glucose (mmol/L)	Ref	0.090 [0.0022, 0.177]*	0.143 [0.022, 0.264]*	0.214 [0.075, 0.352]*	0.003
Insulin (microIU/mL)	Ref	-0.031 [-0.099, 0.038]	-0.026 [-0.120, 0.068]	0.067 [-0.0397, 0.175]	0.222
High sensitivity c-reactive protein (mg/L)	Ref	-0.057 [-0.182, 0.068]	-0.126 [-0.298, 0.0472]	0.031 [-0.167, 0.229]	0.866
Leptin (ng/mL)	Ref	-0.019 [-0.098, 0.059]	0.064 [-0.043, 0.171]	0.086 [-0.0371, 0.209]	0.136
Adiponectin (ng/mL)	Ref	-0.004 [-0.085, 0.076]	0.138 [0.0285, 0.247]*	0.173 [0.0479, 0.299]*	0.004
Tumor necrosis factor-alpha (pg/mL)	Ref	-0.007 [-0.125, 0.109]	0.042 [-0.118, 0.203]	0.050 [-0.135, 0.236]	0.536
Interleukin 6 (pg/mL)	Ref	0.164 [-0.0258, 0.353]	0.343 [0.0847, 0.601]*	0.436 [0.138, 0.734]*	0.003
Interleukin 1b (pg/mL)	Ref	-0.170 [-0.402, 0.063]	-0.098 [-0.419, 0.223]	-0.088 [-0.459, 0.284]	0.703

Corrected for use of hypoglycemic drugs, statins and antihypertensive drugs, AGE, smoking history, alcohol-use, baseline physical activity, baseline cardiovascular disease, use of hormone replacement therapy, and body mass index

U				
	PRE	TRANS	Early POST	Late POST
Body mass index (kg/m2)	Ref	2.927 (-2.762, 8.617)	1.492 (-5.606, 8.591)	0.336 (-4.781, 5.452)
Systolic blood pressure (mmHg)	Ref	-1.348 (-19.40, 16.70)	-11.98 (-34.47, 10.52)	7.346 (-8.911, 23.60)
Diastolic blood pressure (mmHg)	Ref	2.161 (-9.808, 14.13)	-2.720 (-17.64, 12.20)	4.806 (-5.977,15.59)
Total cholesterol (mmol/L)	Ref	0.530 (-0.585, 1.645)	1.112 (-0.279,2.504)	0.984 (-0.0188, 1.987)
High-density lipoprotein (mmol/L)	Ref	-0.189 (-0.691, 0.314)	-0.347 (-0.974, 0.280)	0.0465 (-0.405, 0.498)
Triglycerides (mmol/L)	Ref	0.440 (-0.0590, 0.940)	0.199 (-0.424, 0.822)	0.0334 (-0.416, 0.482)
Fasting glucose (mmol/L)	Ref	0.274 (-0.461, 1.010)	0.0152 (-0.902, 0.932)	0.137 (-0.524, 0.798)
Insulin (microIU/mL)	Ref	-0.337 (-0.928, 0.253)	-0.207 (-0.936, 0.523)	-0.0757 (-0.592, 0.440)
High sensitivity c-reactive protein (mg/L)	Ref	0.0574 (-1.122, 1.237)	-0.778 (-2.239, 0.684)	-0.0779 (-1.135, 0.979)
Leptin (ng/mL)	Ref	0.175 (-0.833, 1.183)	0.715 (-0.494, 1.924)	0.251 (-0.638, 1.139)
Adiponectin (ng/mL)	Ref	-0.102 (-0.857, 0.653)	-0.00553 (-0.928, 0.917)	0.330 (-0.332, 0.992)
Tumor necrosis factor alpha (pg/mL) ²	Ref	0.107 (-1.007, 1.220)	0.158 (-1.190, 1.507)	0.222 (-0.766, 1.211)
Interleukin 6 (pg/mL)	Ref	0.0159 (-1.825, 1.857)	-0.170 (-2.399, 2.059)	-0.586 (-2.224, 1.053)
Interleukin 1b (pg/mL) ²	Ref	0.133 (-1.742, 2.009)	-1.041 (-3.356, 1.275)	-0.215 (-1.901, 1.471)

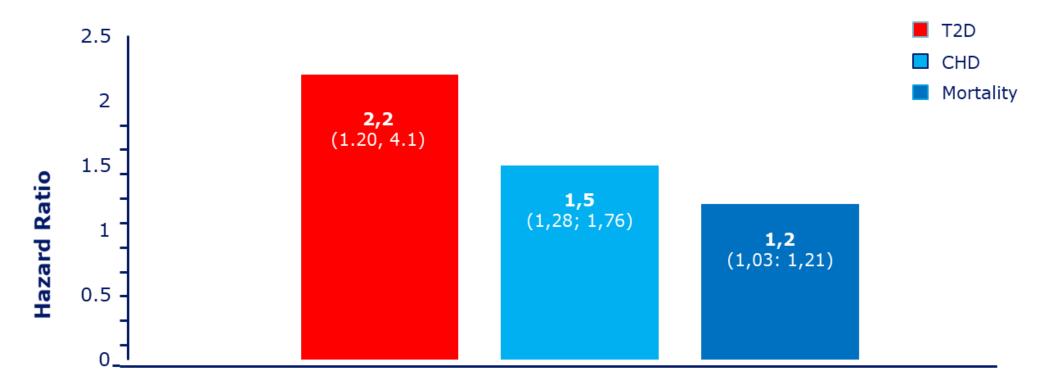

Longitudinal analysis of risk factors

Longitudinal analysis of risk factors (using AGE)

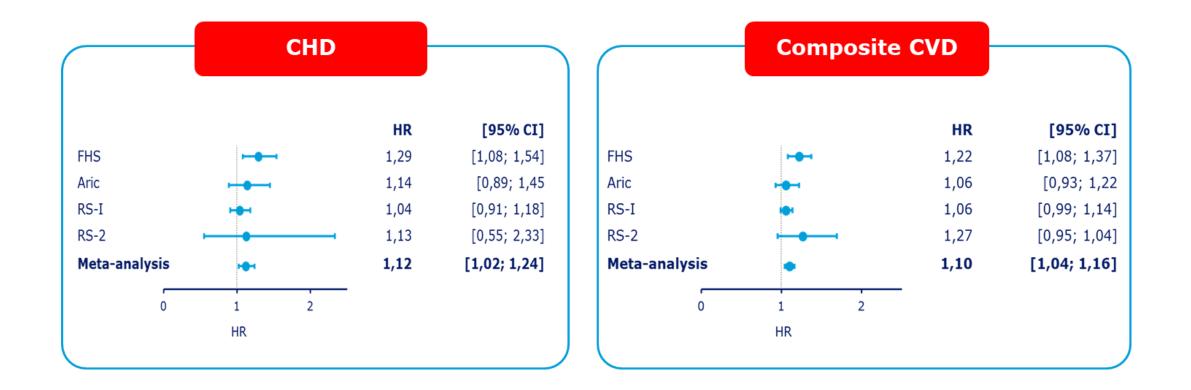
Our findings suggest that the accumulation of deleterious exposures and damage with aging might contribute to menopause-related changes in CVD, and future studies will need to disentangle the relative contribution of effect of age and menopause in CVD risk

Beta	95% CI	P value
-0.014	(-0.041, 0.014)	0.330
0.736	(0.649, 0.824)	<0.000
0.018	(-0.040, 0.076)	0.541
0.023	(0.022, 0.032)	<0.000
0.006	(0.004, 0.009)	<0.000
0.006	(0.004, 0.008)	<0.000
0.0038	(0.0002, 0.007)	0.038
0.0007	(-0.002, 0.003)	0.614
0.002	(-0.003, 0.008)	0.455
-0.002	(-0.006, 0.003)	0.422
0.009	(0.005, 0.012)	<0.000
0.006	(0.001, 0.011)	0.022
-0.013	(-0.021, -0.004)	0.004
-0.007	(-0.014, -0.0002)	0.042

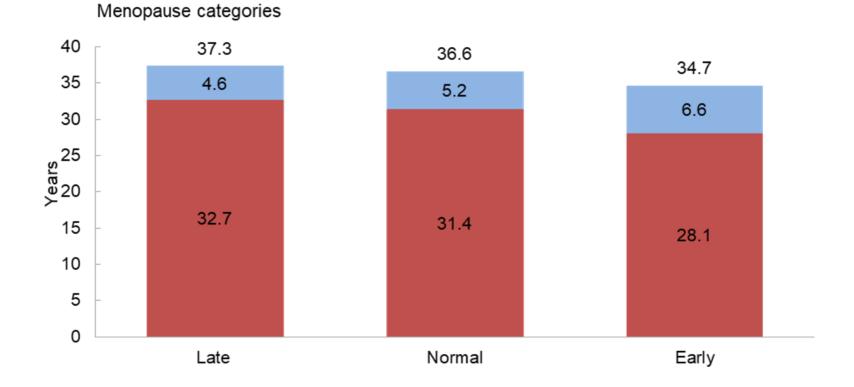
Menopause and Diabetes: independent of age


- Older age and postmenopausal status alone significantly associated with an elevated OR for dysglycemia
- The postmenopausal condition and older age additively influence an elevated risk
- Early onset of menopause is associated with increased risk of T2D

Age at menopause


Early menopause and cardiometabolic risk

Early Age of Menopause



Early menopause and cardiometabolic risk

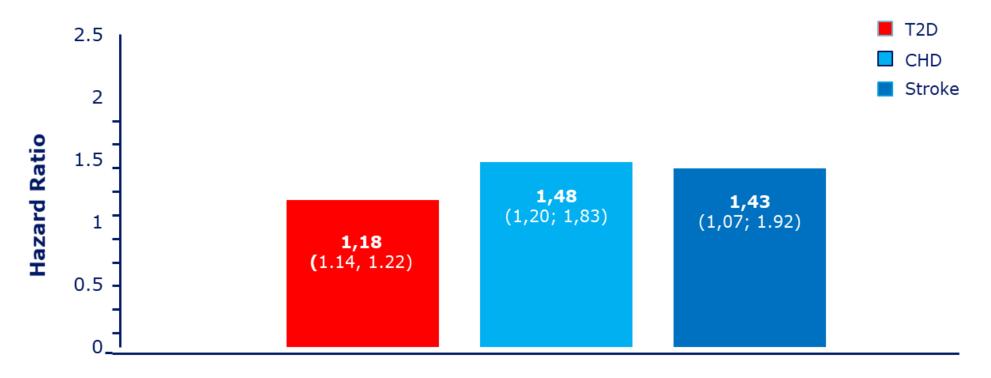
UNIVERSITÄT BERN

Early menopause and life expectancy

■ LE free of DM ■ LE with DM

UNIVERSITÄT BERN

 $u^{\scriptscriptstyle \flat}$


Menopausal symptoms

а 100. 90. Vasomotor symptoms ٠ 80. Hot flashes and night sweats % Reporting Any VMS 70-**Other menopausal symptoms** ٠ 60 -Anxiety 50-Depression 40-Irritability -White 30-Fatigue African American -X Hispanic 20. Decreased libido - Chinese 10--O- Japanese Insomnia 0 -Premenopause Premenopause Early Perimenopause Late Perimenopause to Early Perimenopause to Late Perimenopause

Menopausal Transition Status

to Postmenopause

Vasomotor symptoms

Vasomotor Symptoms

b UNIVERSITÄT BERN

Treatment of menopausal symptoms

	Mean
Class	Ratio (95% CI)
Sham acupuncture	0.74 (0.27, 1.90)
Destrogen + progestogen non-oral	0.23 (0.09, 0.57)
Destrogen + progestogen oral	0.51 (0.25, 1.08)
Tibalone	0.55 (0.23, 1.29)
Raloxifene	• 1.65 (0.61, 4.50)
SSRIs/SNRIs	0.84 (0.54, 1.30)
soflavones	- 0.62 (0.44, 0.87)
Chinese herbal medicine	• 0.95 (0.46, 1.89)
Black cohosh	- 0.40 (0.16, 0.90)
fultibotanicals	0.71 (0.24, 2.08)
Voupuncture	0.58 (0.23, 1.37)
. <u>i i</u>	1 15 2 25 3 5

Women's Health Initiative Hormone Trials

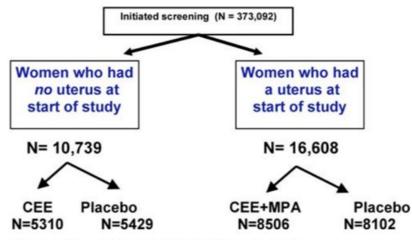


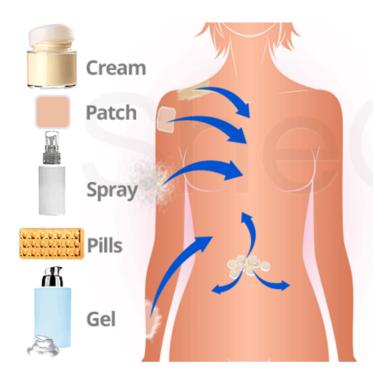
Figure 1. Women's Health Initiative Hormone Trials

CEE, conjugated equine estrogens; MPA, medroxyprogesterone acetate. DOI: 10.1371/journal.pctr.0010026.g001

Coronary Heart Disease

- For every 10,000 women in their 50s on HT for 1 year, 5 extra cases
- For every 10,000 women in their 70s on HT for 1 year, 19 extra cases

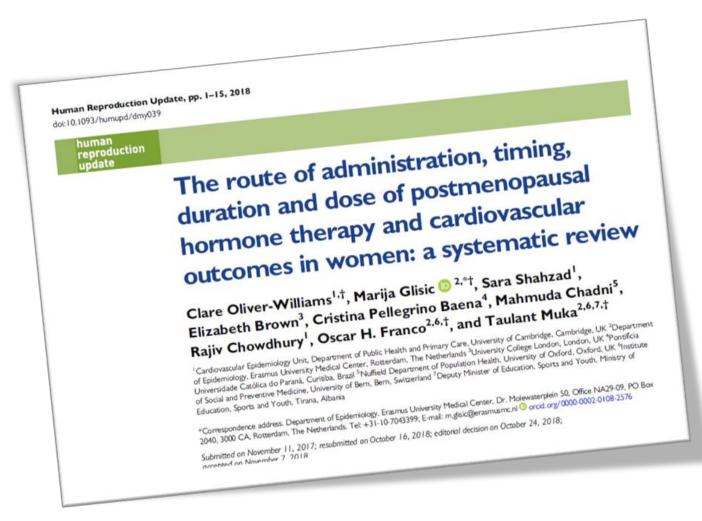
Stroke


For every 10,000 women, 9 extra cases

Bod clots

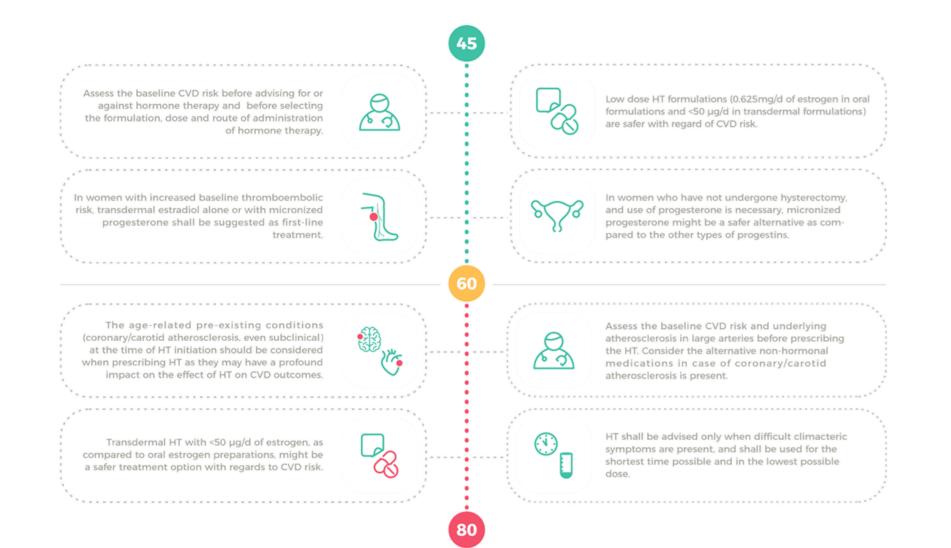
 For every 10,000 women on HT for 1 year, 3 extra cases

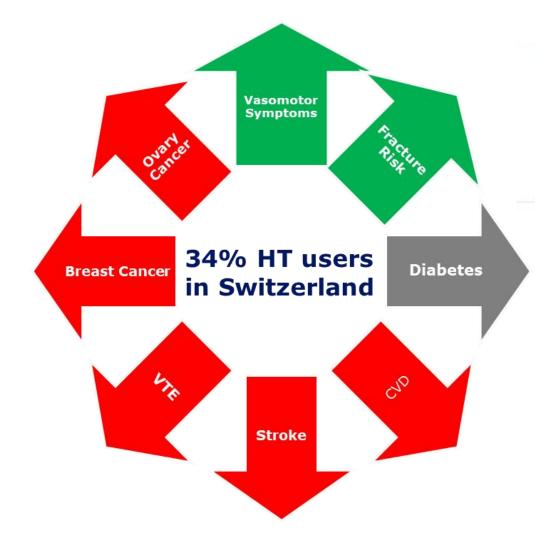
		Combined	d Trials	CEE Trial			CEE + MPA Trial			
Table 5 Cardi	100 Per	es per son-Years	Events by Ve	Cases per 100 Person-Years ars Since Menopause at Baseline			Cases per 100 Person-Years			
Table 5. Cardin	ovascular and		Events by Te		Since Meno					;
		<10	42.071		10-19			≥20		
	No. of Cases		1	No. of Cases]	No. of Cases		1	
	Hormone Therapy (n = 3608)	Therapy Placebo HR	HR (95% CI)*	Hormone Therapy (n = 4483)	Placebo (n = 4494)	HR (95% CI)*	Hormone Therapy (n = 4081)	Placebo (n = 4122)	HR (95% CI)*	P Value for Trend
12				Comb	oined Trials					
CHD‡	39	51	0.76 (0.50-1.16)	113	103	1.10 (0.84-1.45)	194	158	1.28 (1.03-1.58)	.02
Stroke	41	23	1.77 (1.05-2.98)	100	79	1.23 (0.92-1.66)	142	113	1.26 (0.98-1.62)	.36
Total mortality	53	67	0.76 (0.53-1.09)	142	149	0.98 (0.78-1.24)	267	240	1.14 (0.96-1.36)	.51
Global index§	222	203	1.05 (0.86-1.27)	482	440	1.12 (0.98-1.27)	675	632	1.09 (0.98-1.22)	.82
<u></u>	Estimated Absolute Excess RiskEstimated Absolute Excess RiskEstimated Absolute Excess Riskper 10 000 Person-Yearsper 10 000 Person-Yearsper 10 000 Person-Years									


Route of administration

The most commonly prescribed is oral HT

Formula


- Conjugated equine estrogen (CEE), the most common
- Synthetic conjugated estrogens
- Micronized 17b-estradiol and ethinyl estradiol
- Progestins: medroxyprogesterone, acetate (MPA), norethindrone acetate and native progesterone



И́

Hormone therapy and cardiovascular risk

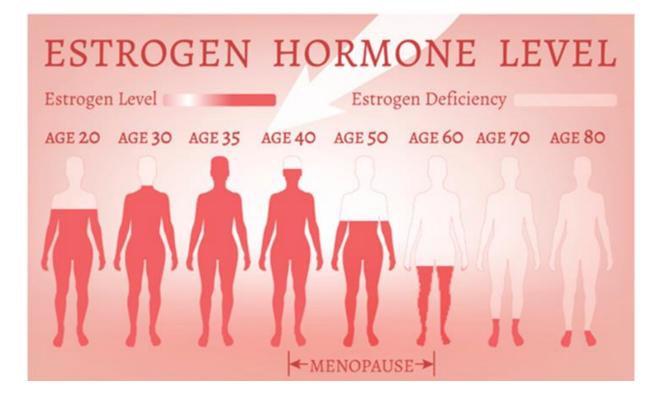
Hormone therapy: benefits and harms

Four in ten women on hormone replacement therapy can't get their medication amid mass shortages

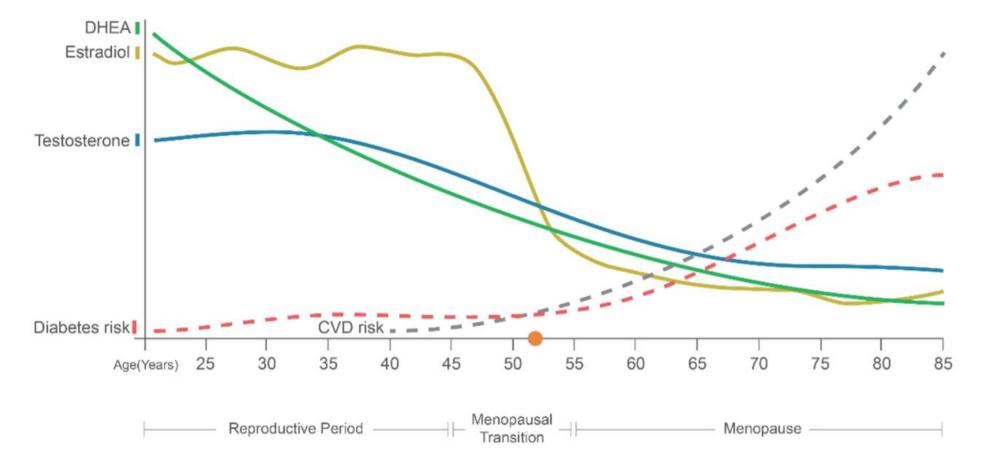
· HRT shortage is forcing some women to go 'cold turkey' on the advice of GPs

· Others are flying to Greece or Spain to get the drugs or rationing the medication

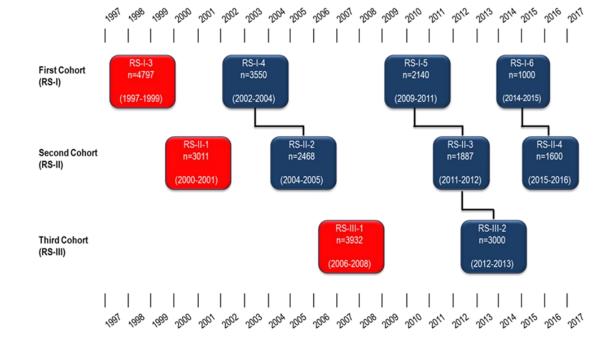
. Survey of 1.500 women found 40 per cent told the medication is not available


HRT shortage in UK expected to continue until next year

Around half of HRT products have been reported as out of stock in UK pharmacies due to supply issues in China, leading to a shortage.


Ь

Estrogen hypothesis: the evidence is amenable to alternative explanations



 $oldsymbol{u}^{\scriptscriptstyle b}$

Adverse metabolic changes related to menopause

Sex hormones and risk of type 2 diabetes

384 women developed diabetes over a median follow-up of 11.1 years

 Diebetes Volume 66, March 2017

 Taulant Muka,^{1,2} Jana Nano,¹ Loes Jaspers,¹ Cindy Meun,³ Wichor M. Bramer,⁴

 Albert Hofman,^{1,2} Abbas Dehghan,¹ Maryim Kavousi,¹ Joop S.E. Laven,² and

 Oscar H. Franco¹

 Associations of Steroid Sex Hormones and Sex Hormone–Binding Globulin With the Risk of Type 2 Diabetes in Women: A Population-Based Cohort Study and Meta-analysis

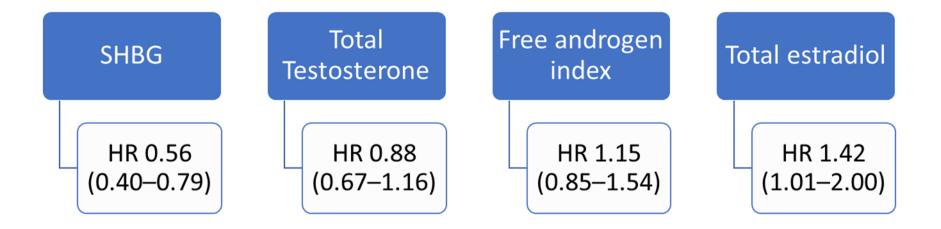
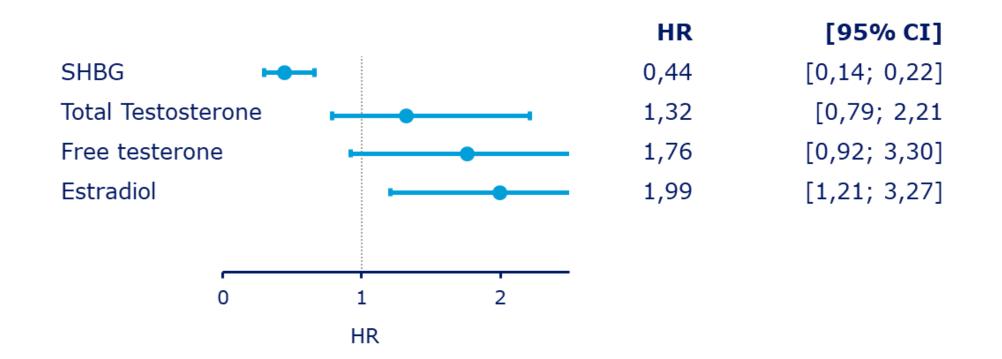
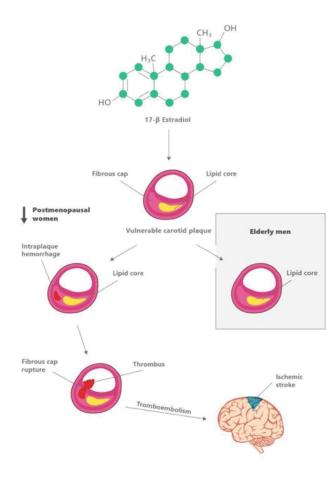

 Dueses 2017/06/577-508 | DOC 10.2317/0616-0475

Table 1-Selected characteristics of study participants, the Rotterdam Study

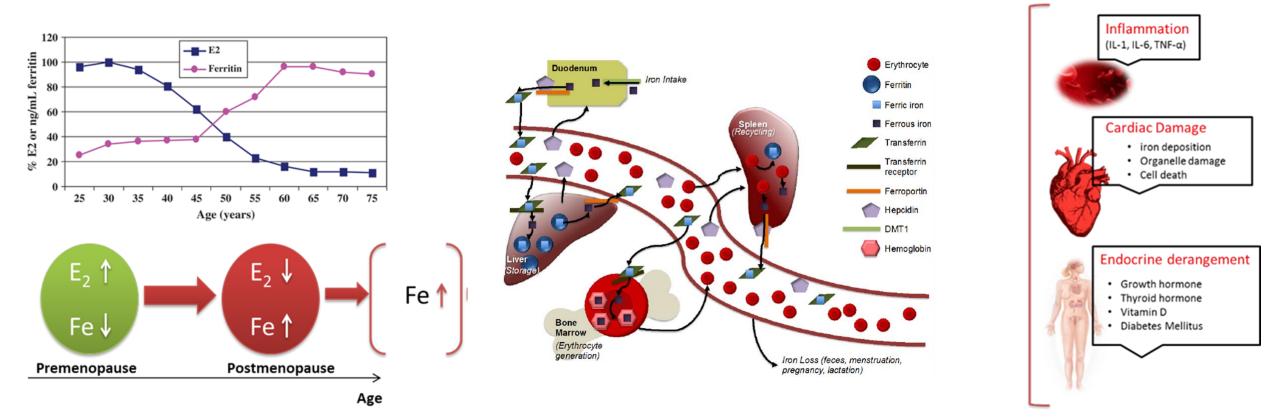
		% missing values
	Women ($n = 3,117$)	
Age (years)	69.7 ± 8.7	0
Years since menopause (years)	20.9 ± 10.0	4.4
Age of menopause (years)	$\textbf{48.9} \pm \textbf{5.2}$	4.4
Number of pregnancies of at least 6 months	2.3 ± 2	12.4
Natural menopause, n (%)	2,433 (78.1)	0
Current smokers, n (%)	218 (9.2)	1.8
Alcohol intake (g/day)	1.3 (10) ^a	26.5
BMI (kg/m ²)	$\textbf{27.0} \pm \textbf{4.3}$	2.3


Muka et al. 2017. Diabetes

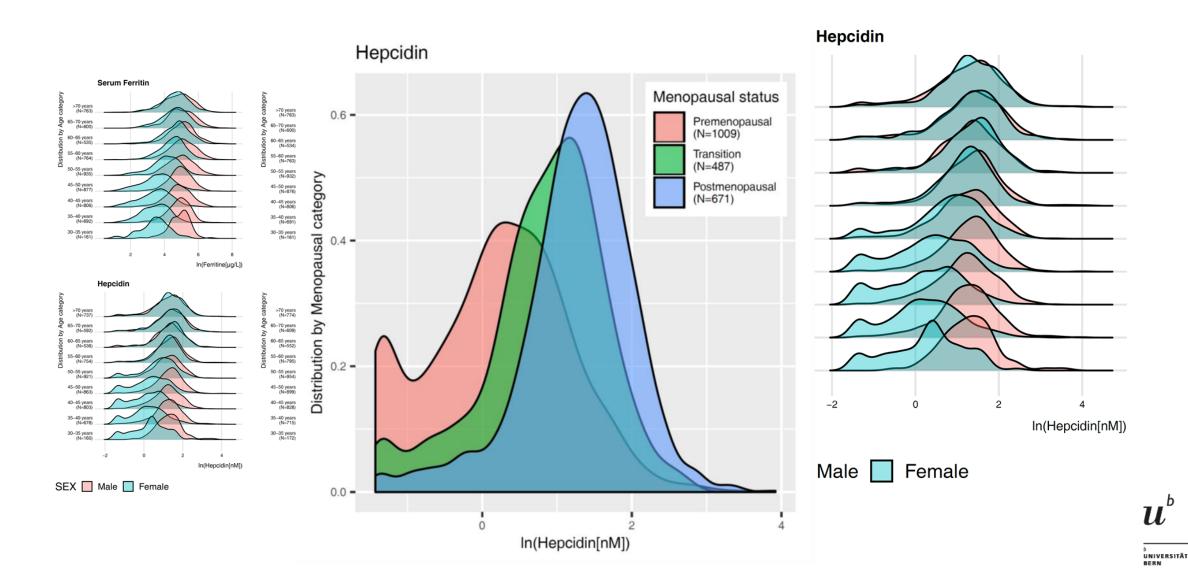
3rd vs. 1st tertiles of steroid sex hormones and type 2 diabetes



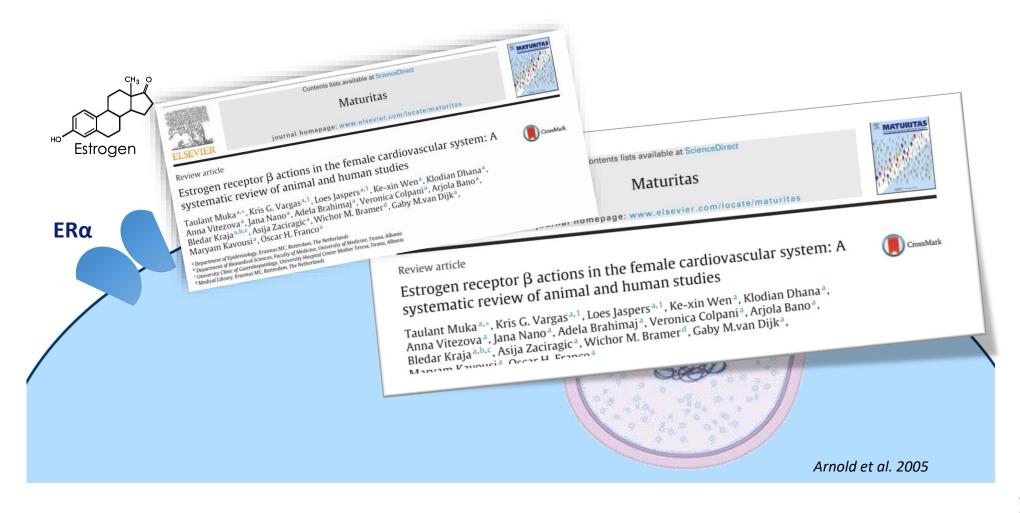
Models adjusted for age, cohort, fasting status, insulin, glucose, and BMI, alcohol intake, smoking status, coronary heart disease, serum total cholesterol, statin use, systolic blood pressure, treatment for hypertension, hormone replacement therapy, age of menopause, CRP, and sex hormones for each other


Sex hormones and risk of type 2 diabetes

Sex hormones and stroke risk



Time to shift from estrogen to iron hypothesis?



UNIVERSITÄT BERN

Time to shift from estrogen to iron hypothesis?

Estrogen Signaling

Alternative treatment

polyphenols that are structurally similar to endogenous estrogen and have weak estrogenic properties

Flaxseed

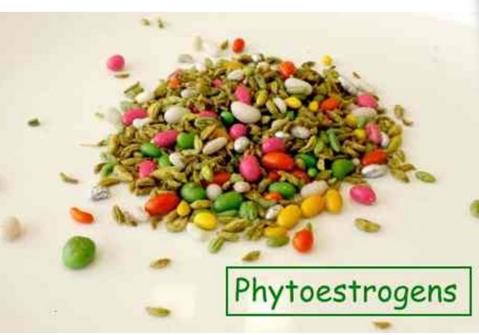
Rice

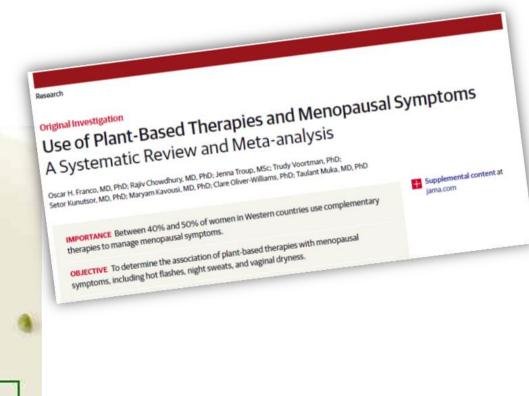
Red Clover

 \bigcirc

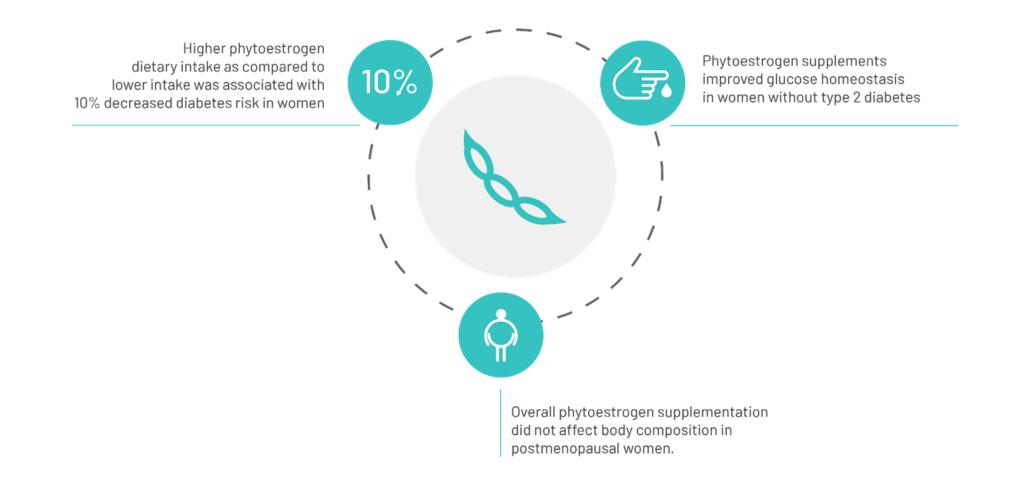
Sesame Seed

Sunflower Seed


Beans

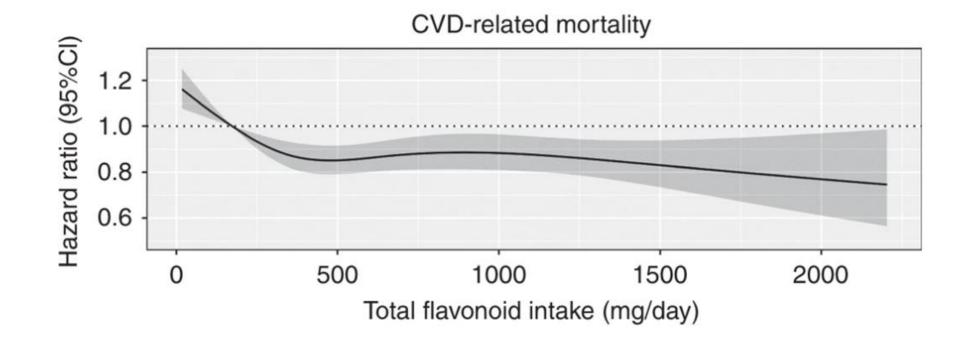


Fruits


Alternative treatment

 $u^{\scriptscriptstyle \flat}$

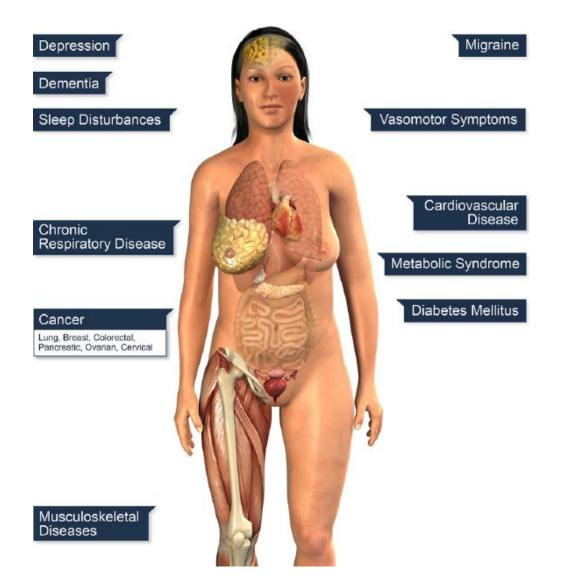
Phytoestrogens and risk of T2D in women



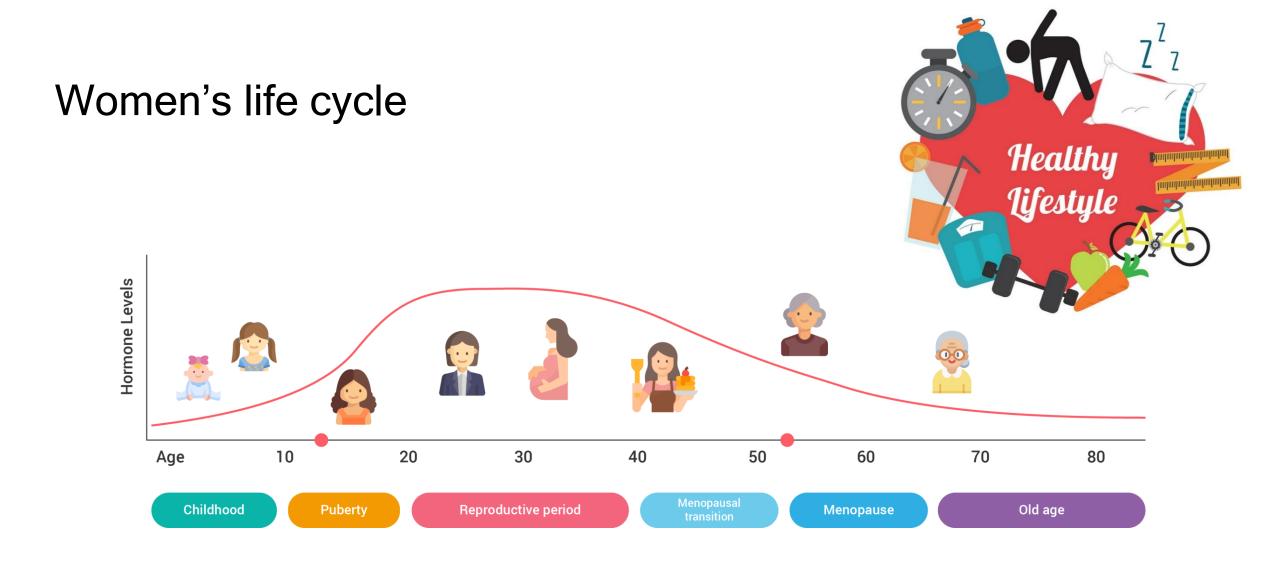
Glisic at al. 2018 Adv Nutr

UNIVERSITÄT BERN

U

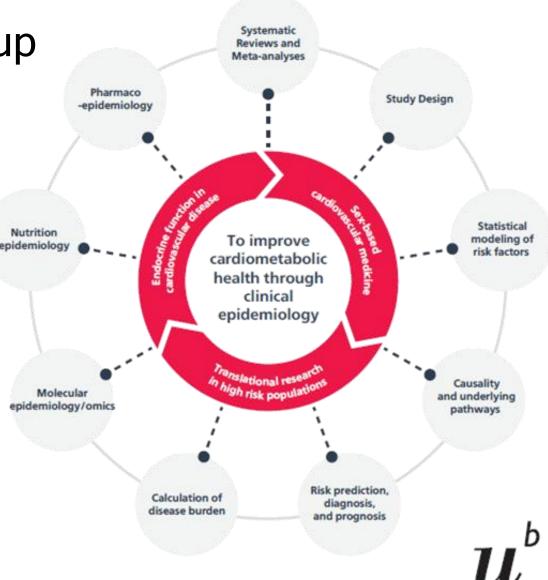

Phytoestrogens, cardiovascular disease and all-cause mortality

UNIVERSITÄT BERN


 $u^{\scriptscriptstyle \flat}$

Major health issues for menopausal women

M. van Dijk et al. 2015 Maturitas



 $u^{\scriptscriptstyle \flat}$

Cardiometabolic Research Group

Thank you!